– water bottles
– soft drink
– salad dome
– biscuit tray
– food containers

– bottle caps
– shopping bags
– freezer bags
– milk bottles
– juice bottles
– shampoo bottles

– bottle caps
– vinyl
– shampoo bottles
– oil bottles
– piping

– garbage bags
– cling wrap
– squeeze bottles

– food containers
– ice cream containers
– straws
– flowerpots
– garden furniture

– CD case
– plastic cutlery
– imitation glass
– foamed meat trays
– brittle toys

– others
– miscellaneous

– automotive
– electronices
– packaging
– 3D filaments

ABS – Acrylonitrile butadiene styrene (ABS) (chemical formula (C8H8)x·(C4H6)y·(C3H3N)z) is a common thermoplastic polymer. Its glass transition temperature is approximately 105 °C (221 °F). ABS is amorphous and therefore has no true melting point. ABS is a terpolymer made by polymerizing styrene and acrylonitrile in the presence of polybutadiene. The proportions can vary from 15 to 35% acrylonitrile, 5 to 30% butadiene and 40 to 60% styrene. The result is a long chain of polybutadiene criss-crossed with shorter chains of poly(styrene-co-acrylonitrile). The nitrile groups from neighboring chains, being polar, attract each other and bind the chains together, making ABS stronger than pure polystyrene. The styrene gives the plastic a shiny, impervious surface. The polybutadiene, a rubbery substance, provides toughness even at low temperatures. For the majority of applications, ABS can be used between −20 and 80 °C (−4 and 176 °F) as its mechanical properties vary with temperature.[4] The properties are created by rubber toughening, where fine particles of elastomer are distributed throughout the rigid matrix.

PC – Polycarbonates (PC) are a group of thermoplastic polymers containing carbonate groups in their chemical structures. Polycarbonates used in engineering are strong, tough materials, and some grades are optically transparent. They are easily worked, molded, and thermoformed. Because of these properties, polycarbonates find many applications. Polycarbonates do not have a unique resin identification code (RIC) and are identified as “Other”, 7 on the RIC list. Products made from polycarbonate can contain the precursor monomer bisphenol A (BPA).


PE – Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most common plastic in use today. It is a linear, man-made, addition, homo-polymer, primarily used for packaging (plastic bags, plastic films, geomembranes, containers including bottles, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market. Many kinds of polyethylene are known, with most having the chemical formula (C2H4)n. PE is usually a mixture of similar polymers of ethylene, with various values of n. It can be low density or high density: low density polyethylene is extruded[verification needed] using high pressure (1000-5000 atm) and high temperature (520 Kelvin), while high density polyethylene is extruded[verification needed] using low pressure (6-7 atm) and low temperature (333-343 Kelvin). Polyethylene is usually thermoplastic, however it can be modified to become thermosetting instead, for example in cross-linked polyethylene.


PP – Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene. 
Polypropylene belongs to the group of polyolefins and is partially crystalline and non-polar. Its properties are similar to polyethylene, but it is slightly harder and more heat resistant. It is a white, mechanically rugged material and has a high chemical resistance.[1] Polypropylene is the second-most widely produced commodity plastic (after polyethylene) and it is often used in packaging and labeling.

PBT – Polybutylene terephthalate (PBT) is a thermoplastic engineering polymer that is used as an insulator in the electrical and electronics industries. It is a thermoplastic (semi-)crystalline polymer, and a type of polyester. PBT is resistant to solvents, shrinks very little during forming, is mechanically strong, heat-resistant up to 150 °C (or 200 °C with glass-fibre reinforcement) and can be treated with flame retardants to make it noncombustible. It was developed by Britain’s Imperial Chemical Industries (ICI).

PBT is closely related to other thermoplastic polyesters. Compared to PET (polyethylene terephthalate), PBT has slightly lower strength and rigidity, slightly better impact resistance, and a slightly lower glass transition temperature. PBT and PET are sensitive to hot water above 60 °C (140 °F). PBT and PET need UV protection if used outdoors, and most grades of these polyesters are flammable, although additives can be used to improve both UV and flammability properties.

POM – Polyoxymethylene (POM), also known as acetal,[2] polyacetal, and polyformaldehyde, is an engineering thermoplastic used in precision parts requiring high stiffness, low friction, and excellent dimensional stability. As with many other synthetic polymers, it is produced by different chemical firms with slightly different formulas and sold variously by such names as Delrin, Kocetal, Ultraform, Celcon, Ramtal, Duracon, Kepital, Polypenco, and Hostaform. POM is characterized by its high strength, hardness and rigidity to −40 °C. POM is intrinsically opaquewhite, due to its high crystalline composition, but it is available in all colors. POM has a density of 1.410–1.420 g/cm3.
Typical applications for injection-molded POM include high-performance engineering components such as small gear wheels, eyeglass frames, ball bearings, ski bindings, fasteners, guns, knife handles, and lock systems. The material is widely used in the automotive and consumer electronics industry.

Information from Wikipedia The Free Encyclopedia, 
https://en.wikipedia.org/

JW Global inc.

hsk international.

myungjin polytech.